Indole-2-carboxylic acid: a competitive antagonist of potentiation by glycine at the NMDA receptor.

نویسنده

  • J E Huettner
چکیده

The N-methyl-D-aspartate (NMDA) class of excitatory amino acid receptors regulates the strength and stability of excitatory synapses and appears to play a major role in excitotoxic neuronal death associated with stroke and epilepsy. The conductance increase gated by NMDA is potentiated by the amino acid glycine, which acts at an allosteric site tightly coupled to the NMDA receptor. Indole-2-carboxylic acid (I2CA) specifically and competitively inhibits the potentiation by glycine of NMDA-gated current. In solutions containing low levels of glycine, I2CA completely blocks the response to NMDA, suggesting that NMDA alone is not sufficient for channel activation. I2CA will be useful for defining the interaction of glycine with NMDA receptors and for determining the in vivo role of glycine in excitotoxicity and synapse stabilization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of 1-aminocyclopropanecarboxylic acid on N-methyl-D-aspartate-stimulated [3H]-noradrenaline release in rat hippocampal synaptosomes.

1. The effect of 1-aminocyclopropanecarboxylic acid (ACPC), a partial agonist at the glycine site of the N-methyl-D-aspartate (NMDA) receptor complex that exhibits neuroprotective, anxiolytic and antidepressant-like actions, was investigated in a functional assay for presynaptic NMDA receptors. 2. NMDA (100 microM) produced a 36% increase of tritium efflux above basal efflux in rat hippocampal ...

متن کامل

Effects of the excitatory amino acid receptor antagonists kynurenate and indole-2-carboxylic acid on behavioral and neurochemical outcome following experimental brain injury.

The overactivation of the NMDA receptor is thought to be a major contributor to the pathophysiologic sequelae of traumatic brain injury (TBI), which commonly includes memory dysfunction. Uniquely, potentiation of the NMDA receptor is dependent on the binding of glycine to a distinct site on the receptor. Despite the potential role of the NMDA receptor in the development of post-TBI cognitive de...

متن کامل

Corymine potentiates NMDA-induced currents in Xenopus oocytes expressing NR1a/NR2B glutamate receptors.

Previous studies demonstrated that corymine, an indole alkaloid isolated from the leaves of Hunter zeylanica, dose-dependently inhibited strychnine-sensitive glycine-induced currents. However, it is unclear whether this alkaloid can modulate the function of the N-methyl-D-aspartate (NMDA) receptor on which glycine acts as a co-agonist via strychnine-insensitive glycine binding sites. This study...

متن کامل

Potentiation of NMDA receptor-mediated responses by dynorphin at low extracellular glycine concentrations.

The effect of dynorphin A(1-13) on N-methyl-D-aspartate (NMDA)-activated currents was investigated in the presence of low extracellular glycine concentrations in Xenopus oocytes expressing recombinant heteromeric NMDA receptors and in cultured hippocampal neurons with the use of voltage-clamp techniques. At an extracellular added glycine concentration of 100 nM, dynorphin A(1-13) (10 microM) gr...

متن کامل

Differential long-lasting potentiation of the NMDA and non-NMDA synaptic currents induced by metabotropic and NMDA receptor coactivation in cerebellar granule cells.

UNLABELLED Whole-cell patch-clamp recordings in rat cerebellar slices were used to investigate the effect of metabotropic glutamate receptor activation on mossy fibre-granule cell synaptic transmission. Transient application of 20 microM 1S, 3R-aminocyclopentane-1, 3-dicarboxylic acid simultaneously with low-frequency NMDA receptor activation induced long-lasting non-decremental potentiation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 243 4898  شماره 

صفحات  -

تاریخ انتشار 1989